
R E S E A R CH AR T I C L E

Intrinsic connectivity networks underlying individual
differences in control-averse behavior

Sarah Rudorf1,2 | Thomas Baumgartner1,2 | Sebastian Markett3 | Katrin Schmelz4,5 |

Roland Wiest6 | Urs Fischbacher4,5 | Daria Knoch1,2

1Department of Social Psychology and Social

Neuroscience, Institute of Psychology,

University of Bern, Bern, Switzerland

2Center for Cognition, Learning and Memory,

University of Bern, Bern, Switzerland

3Molecular Psychology, Department of

Psychology, Humboldt University Berlin,

Berlin, Germany

4Department of Economics, University of

Konstanz, Konstanz, Germany

5Thurgau Institute of Economics, Kreuzlingen,

Switzerland

6Department of Neuroradiology, Inselspital,

Bern, Switzerland

Correspondence

Sarah Rudorf, Department of Social

Psychology and Social Neuroscience, Institute

of Psychology, University of Bern,

Fabrikstrasse 8, 3012 Bern, Switzerland.

Email: sarah.rudorf@psy.unibe.ch

Funding information

Mens Sana Foundation

Abstract
When people sense that another person tries to control their decisions, some people will act

against the control, whereas others will not. This individual tendency to control-averse behavior

can have far-reaching consequences, such as engagement in illegal activities or noncompliance

with medical treatments. Although individual differences in control-averse behavior have been

well documented in behavioral studies, their neurological basis is less well understood. Here, we

use a neural trait approach to examine whether individual differences in control-averse behavior

might be linked to stable brain-based characteristics. To do so, we analyze the association

between intrinsic connectivity networks as measured by resting state functional magnetic reso-

nance imaging and control-averse behavior in an economic exchange game. In this game, sub-

jects make choices that are either free or controlled by another person, with real consequences

to both interaction partners. We find that the individual level of control-averse behavior can be

positively predicted by intrinsic connectivity within the salience network, but not the central

executive network or the default mode network. Specifically, subjects with a more prominent

connectivity hub in the dorsal anterior cingulate cortex show greater levels of control-averse

behavior. This finding provides the first evidence that the heterogeneity in control-averse

behavior might originate in systematic differences of the stable functional brain organization.
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1 | INTRODUCTION

Control-averse behavior is a highly relevant social phenomenon, con-

tributing to prevalent detrimental behaviors such as tax evasion

(Mendoza, Wielhouwer, & Kirchler, 2017; Murphy, 2005) or noncom-

pliance with vaccination recommendations (Betsch & Böhm, 2016). It

describes the tendency to react negatively to exogenous control of

one’s freedom of choice (Falk & Kosfeld, 2006). In other words, when

people sense that another person tries to control their decisions, some

people will act against the control, whereas others will not. Moreover,

control-averse behavior can have far-reaching consequences for the

individual, such as noncompliance with psychiatric treatments (De las

Cuevas, Peñate, Betancort, & de Rivera, 2014) or engagement in

illegal or harmful activities (Hornik, Jacobsohn, Orwin, Piesse, &

Kalton, 2008; Wiium, Aarø, & Hetland, 2009). Importantly, individuals

differ in the extent of their control-averse behavior (Falk & Kosfeld,

2006; Ziegelmeyer, Schmelz, & Ploner, 2012), but the origin of this

heterogeneity is less well understood. Whereas previous work has

associated control aversion with negative affects and a sense of being

restricted in one’s freedom of choice (Dillard & Shen, 2005; Miron &

Brehm, 2006), more recent work has highlighted the role of social cog-

nitions, such as perceived distrust, in driving control-averse behavior

in social interactions (Falk & Kosfeld, 2006; Rudorf et al., 2018). To

date, however, little is known about the underlying neurobiological

basis of individual differences in control-averse behavior.

One way to quantify the neurobiology of individual differences in

control-averse behavior is to study stable brain-based characteristics,

termed neural traits (Nash, Gianotti, & Knoch, 2015). A fruitful
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approach to investigating neural traits has been the characterization

of functionally interconnected brain networks at rest, so-called intrin-

sic connectivity networks (ICNs) (Biswal, Yetkin, Haughton, & Hyde,

1995; Markett, Montag, & Reuter, 2018; Seeley et al., 2007; Xiong,

Parsons, Gao, & Fox, 1999). ICNs are networks of remote brain

regions that show a strong coupling of spontaneous fluctuations in

the blood oxygen level-dependent (BOLD) signal typically measured

with resting state functional magnetic resonance imaging (fMRI)

(Gordon, Stollstorff, & Vaidya, 2012; Menon, 2011; Seeley et al.,

2007; Van den Heuvel & Hulshoff Pol, 2010). The major ICNs at rest

correspond closely to functional networks during active tasks (Smith

et al., 2009), implying that ICNs relate to “online” functioning that

underlies central aspects of human behavior. Furthermore, the tempo-

ral and spatial signatures of ICNs have been shown to predict individ-

ual differences in behavior (Fox, Snyder, Vincent, & Raichle, 2007;

Kelly, Uddin, Biswal, Castellanos, & Milham, 2008; Mennes et al.,

2011; Seeley et al., 2007). Importantly, ICNs are remarkably stable

across time and samples (Biswal et al., 2010; Damoiseaux et al., 2006;

Shehzad et al., 2009; Zuo et al., 2010) and can be used to distinguish

between individual profiles (Finn et al., 2015; Tavor et al., 2016). They

therefore meet the criteria of stable brain-based characteristics that

may help explain the neurobiological basis of the heterogeneity in

social behavior, as formalized in the neural trait approach (Nash

et al., 2015).

Three ICNs are particularly relevant for the cognitive and emo-

tional information processing underlying social behavior: the central

executive network (CEN), the salience network (SN), and the default

mode network (DMN) (Menon, 2011). The CEN, also referred to as

the frontoparietal network (Smith et al., 2009), consists primarily of

nodes in the dorsolateral prefrontal cortex (dlPFC) and the lateral pos-

terior parietal cortex (PPC) and has been associated with high-level

cognitive functions such as planning, goal-directed decision making,

and working memory (Menon, 2011; Seeley et al., 2007; White,

Joseph, Francis, & Liddle, 2010; Yu et al., 2017). The SN, also referred

to as the cingulo-opercular network (Chen et al., 2013; Elton & Gao,

2014; Hahn et al., 2015) or the executive control network (Smith

et al., 2009), is anchored in the dorsal anterior cingulate cortex (ACC)

and the anterior insula and has been associated with the detection of

and orientation to salient external stimuli as well as the autonomic

integration of internal events (Menon, 2011; Seeley et al., 2007).

Moreover, recent findings suggest that the SN may be responsible for

switching between the engagement of the CEN and the DMN during

events that require access to attention and working memory

resources (Menon & Uddin, 2010; Sridharan, Levitin, & Menon, 2008).

Lastly, the DMN has its most prominent nodes in the medial prefron-

tal cortex (mPFC), the posterior cingulate cortex (PCC) and the medial

temporal lobes (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner,

2010; Greicius, Krasnow, Reiss, & Menon, 2003; Menon, 2011;

Raichle et al., 2001) and has been associated with self-related cogni-

tive activity, such as self-monitoring, and social cognition (Li, Mai, &

Liu, 2014; Mars et al., 2012; Menon, 2011). Although the DMN is the

ICN that is predominantly associated with social cognitive functions,

recent work has highlighted the roles of the SN and CEN in predicting

reciprocal social behavior (Cáceda, James, Gutman, & Kilts, 2015) and

tendencies for cooperative behavior (Hahn et al., 2015). Similarly,

control-averse behavior in social interactions relies on social cognitive

functions and choosing between cooperative and noncompliant social

behavior (Falk & Kosfeld, 2006; Rudorf et al., 2018). Taken together,

their contribution to these central aspects of human social behavior

makes the CEN, SN, and DMN prime candidates for neural traits of

control-averse behavior.

Here, we investigate the neural traits of control-averse behavior

by combining a behavioral Control aversion task with independent

resting state fMRI. In the Control aversion task, subjects make deci-

sions that are either free or controlled by another person. In the Free

condition, subjects can choose freely among a set of monetary alloca-

tions between themselves and the other person, ranging from selfish

to more generous and fairer allocations. In the Controlled condition,

the other person requests a minimal monetary return and thereby

restricts the subjects’ freedom of choice to the more generous and

fairer allocations. The degree to which subjects allocate less money to

the other person in the Controlled than in the Free condition mea-

sures their control-averse behavior. Crucially, the decisions are not

hypothetical, but have real (monetary) consequences to both the sub-

ject as well as the other person. This feature ensures a high ecological

validity of the measured control-averse behavior.

To assess the neural traits, we identify the CEN, SN, and DMN in

resting state fMRI data using an independent component analysis

(ICA). This approach has two advantages. First, ICNs measured by

resting state fMRI instead of task-related fMRI are more robust to

physiological noise and represent a reliable measurement of large-

scale brain networks (Bressler & Menon, 2010; Menon, 2011). Sec-

ond, in contrast to a seed-based analysis of connectivity with individ-

ual brain regions, the ICA allows us to investigate the dynamics of

intrinsic brain networks at a larger scale (Van den Heuvel & Hulshoff

Pol, 2010). By applying the ICA to the resting state fMRI data, we sep-

arate the BOLD signal into 70 statistically independent components

with unique, albeit not exclusive, spatial, and temporal patterns (Abou

Elseoud et al., 2011; Laird et al., 2017; Menon, 2011; Ray et al.,

2013). Using a template matching procedure we then identify the

CEN, SN, and DMN among the independent components (Shirer,

Ryali, Rykhlevskaia, Menon, & Greicius, 2012; Smith et al., 2009). We

focus on the CEN, SN, and DMN due to their implications in social

cognitive functions and social behavior (Cáceda et al., 2015; Hahn

et al., 2015; Mars et al., 2012), which make them likely candidates for

neural traits of control-averse behavior in social interactions. The

components that match visual, auditory and sensorimotor networks

are omitted from the analysis, because we have no prior assumptions

about their involvement in control-averse behavior. Finally, we test

whether the spatial and temporal dynamics within and between the

CEN, SN, and DMN can predict individual differences in control-

averse behavior.

2 | MATERIALS AND METHODS

2.1 | Participants

We recruited a total of 61 students from the University of Bern for

participation in this study. All participants were right-handed,

2 RUDORF ET AL.



nonsmokers, and reported no history of psychological disorders, neu-

rological, or cardiovascular diseases. We excluded students of psy-

chology, economics and social sciences from participation to reduce

the likelihood of prior knowledge of the concept of control aversion.

Data from 11 participants had to be excluded from the analysis due to

excessive movements during the resting state fMRI scan (movement

>1.5 mm, or rotation >1.5�). Data from the remaining 50 participants

(28 female; mean, 22 � 4 SD years) were included in the analysis. All

participants received a compensation of CHF 50 (≈USD 50) for partic-

ipation in the study in addition to the payoff from the task described

below. The study was approved by the Bern Cantonal Ethics Commis-

sion and all participants gave informed, written consent.

2.2 | Control aversion task and behavioral data
analysis

To measure each individual’s level of control-averse behavior, we

implemented a Control aversion task based on a principal-agent game

previously used in behavioral economics (Falk & Kosfeld, 2006;

Schmelz & Ziegelmeyer, 2015; Ziegelmeyer et al., 2012). Subjects

completed the task while they were lying in an MRI scanner as part of

an omnibus project; the task-based fMRI data are reported elsewhere

(Rudorf et al., 2018). In the Control aversion task, subjects are repeat-

edly asked to allocate money between themselves and an anonymous

other person, called player A. Before a subject can make a decision,

however, the player A chooses to either let the subject decide freely

(Free condition) or to request a minimum monetary return from the

subject and thereby restrict the subject’s choice options (Controlled

condition). The monetary allocations are presented as a set of five

predefined pairs of monetary units (MUs), called generosity levels,

ranging from a selfish allocation (99 MUs for the subject, 1 MU for

player A) to a more generous and equal allocation (80 MUs for both

the subject and player A) (Figure 1). In the Free condition, the subject

has the choice between all five generosity levels. In the Controlled

condition, the subject’s choice is restricted to levels two to five, mean-

ing that the most selfish option is ruled out. The monetary allocations

are designed such that choosing a higher generosity level is associated

with higher profits for player A, making it beneficial for player A, and

relatively small costs for the subject. Concretely, with increasing gen-

erosity levels, the MUs for player A increase in larger increments from

1 to 80 MUs, whereas the MUs for the subject decrease in smaller

increments from 99 to 80 MUs. Moreover, the highest level repre-

sents an equal allocation and the largest sum of MUs. These features

were implemented to motivate subjects to choose a high level when

they can decide freely and, hence, to create room for the choice of a

lower level in the Controlled condition. The contrast between the two

conditions has been shown to evoke control-averse behavior: a sub-

stantial share of subjects will allocate less money to the other person

if the other person restricts the subject’s choices than when the sub-

ject can decide freely (Falk & Kosfeld, 2006; Schmelz & Ziegelmeyer,

2015; Ziegelmeyer et al., 2012). With regard to the Control aversion

task, we define control-averse behavior as the difference between the

chosen levels in the Free condition and the chosen levels in the

Controlled condition. Subjects’ choices were highly consistent within

each condition, with a variance of mean 0.33 � 0.33 SD, median 0.27,

in the Controlled condition and a variance of mean 0.33 � 0.38 SD,

median 0.21, in the Free condition (Supporting Information Materials

S3). Therefore, choices within each condition were aggregated and

the individual level of control-averse behavior was computed as the

difference between each subject’s mean chosen level in the Free con-

dition minus the mean chosen level in the Controlled condition. Thus,

greater positive values correspond to a higher level of control-averse

behavior. Critically, subjects differ in whether and to which degree

they display control-averse behavior. Whereas some subjects will

always choose the lowest possible level, others will choose the same

FIGURE 1 Control aversion task. At the beginning of each of 16 trials, the subject is reminded that a new player A is assigned. In the Free

condition, the subject can choose freely among five levels of monetary allocations between herself and player A. In the Controlled condition, the
player A requests a minimum of level two. After a delay of 3 s, a red selection frame appears around a random level and the subject selects a level
by moving the frame and pressing an OK button. Interstimulus intervals were randomly jittered. RT, response time [Color figure can be viewed at
wileyonlinelibrary.com]
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level in both conditions, and yet others will choose a lower level when

they are controlled than when they can decide freely.

At the end of each trial, subjects are asked to rate their unhappi-

ness, anger and feeling of being controlled on 5-point pictorial assess-

ment scales (Figure 2) (Bradley & Lang, 1994). The feeling of being

controlled scale was used as a manipulation check.

In total, subjects were presented with 16 anonymous players A’s

decisions from a pilot study, which were preselected to ensure an

equal number of trials in the Free and in the Controlled condition, that

is, eight trials per condition. Subjects were not aware of this preselec-

tion, but they were informed that the players A’s decisions had been

prerecorded for logistic reasons. Subjects were also informed that

their choices in the task had real consequences in the sense that one

trial would be randomly selected and paid out to themselves and the

corresponding player A. Prior to performing the task, subjects read

the instructions and were quizzed to ensure they had understood the

task and its payoff scheme.

At the end of the task, one trial was randomly selected and the

corresponding payoffs were converted into CHF (with 1 MU = CHF

0.20 ≈ USD 0.20). Based on the task, the subjects’ received a mean

CHF 17.50 � 3.90 SD, and the players A received a mean CHF

10.70 � 4.60 SD.

The behavioral data were analyzed using the Statistics and

Machine Learning Toolbox in MATLAB R2015b (The MathWorks,

Inc.). Because the behavioral data did not follow normal distributions

as assessed by Kolmogorov–Smirnov tests, paired samples were com-

pared using Wilcoxon signed rank tests and correlations were

assessed using Spearman’s rho as well as robust regressions. For all

robust regressions, the residuals were approximately normally

distributed.

2.3 | MRI data acquisition

All MRI data were acquired on a Siemens Trio 3.0 Tesla whole-body

scanner (Siemens, Erlangen) using a 32-channel head coil. The func-

tional session started off with a localizer scan followed by a resting

state fMRI sequence, during which subjects were instructed to lie as

still as possible with their eyes closed, thinking of nothing in particular

and without falling asleep. From each subject, we acquired gradient

echo T2*-weighted echo-planar images (EPIs; 460 volumes per session)

with BOLD contrast (32 slices per volume, interleaved order, Field of

View 192 × 192 × 108 mm, slice thickness 3 mm, gap 0.75 mm, repeti-

tion time 1,980 ms, echo time 30 ms, flip angle 90�). Volumes were

acquired in axial orientation to the anterior commissure-posterior com-

missure line. After the functional run, high-resolution T1-weighted 3D

modified driven equilibrium Fourier transformation (MDEFT) images

were acquired from each subject (176 slices, Field of View 256 × 256 ×

176 mm, slice thickness 1 mm, no gap, repetition time 7.92 ms, echo

time 2.48 ms, flip angle 16�).

2.4 | Preprocessing

Preprocessing was implemented in the FMRIB Software Library (FSL)

version 5.0.10 (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,

2012) and ICA-AROMA (Pruim et al., 2015). Prior to preprocessing, all

images were skull-stripped using the brain extraction tool (BET)

included in FSL (Smith, 2002). The functional images were skull-

stripped using BET with the extension for four-dimensional images

and a fractional intensity of 0.3. For the anatomical images, we first

removed the neck information using the FSL function robustfov and

then skull-stripped the images using BET with a fractional intensity of

0.3. All images were visually inspected to ensure optimal results.

Preprocessing of the functional images involved the following

steps: (1) removal of the first 10 volumes, (2) motion correction using

FMRIB's Linear Image Registration Tool (MCFLIRT) (Jenkinson, Ban-

nister, Brady, & Smith, 2002), (3) correction for interleaved slice acqui-

sition times, (4) thresholding at 10% of the 98th percentile and

maximum filtering of all voxels, (5) spatial smoothing with a 5 mm full

width at half maximum Gaussian kernel using a 3D median filter and a

brightness threshold of 0.75 * 50th percentile as implemented in

SUSAN (Smith & Brady, 1997), (6) intensity normalization, (7) indepen-

dent component analysis-based automatic removal of motion artifacts

(ICA-AROMA) (Pruim et al., 2015), (8) nuisance regression to remove

white matter and cerebrospinal fluids using the tissue probability

masks distributed with the Data Processing Assistant for Resting-

State fMRI (http://rfmri.org/DPARSF), (9) high-pass filtering with a

0.01 Hz cut-off to remove slow drifts, (10) registration of the high-

resolution anatomical image to the MNI152 standard space template

image (Montreal Neurological Institute) using a standard 12� of free-

dom search in FMRIB's Linear Image Registration Tool (FLIRT)

FIGURE 2 Trial-by-trial affect ratings. At the end of each trial, subjects rated their unhappiness, anger and feeling of being controlled on 5-point

pictorial assessment scales (Bradley & Lang, 1994). The interstimulus intervals were randomly jittered. RT, response time [Color figure can be
viewed at wileyonlinelibrary.com]

4 RUDORF ET AL.

http://rfmri.org/DPARSF
http://wileyonlinelibrary.com


(Jenkinson et al., 2002; Jenkinson & Smith, 2001), refinement of the

registration with a warp resolution of 10 mm in FMRIB’s Nonlinear

Image Registration Tool (FNIRT) (Andersson, Jenkinson, & Smith,

2007), and finally application of the resulting registration matrices to

normalize the functional data. To verify that our results were not

biased by global signal fluctuations, we repeated the analyses after

including global signal regression (GSR) in the preprocessing

(Supporting Information Materials S8 and S9).

2.5 | Identification of the ICNs

2.5.1 | ICA and dual-stage regression

To derive the ICNs from the preprocessed images of all subjects, we

performed a group-level temporal concatenation independent compo-

nent analysis (group-ICA) using FSL’s Multivariate Exploratory Linear

Optimized Decomposition into Independent Components (MELODIC)

version 3.0 (Beckmann & Smith, 2004) with an estimation of 70 com-

ponents (Abou Elseoud et al., 2011; Ray et al., 2013). An automatic

estimation of the components yielded 263 independent components,

which represented small voxel clusters rather than the large-scale

ICNs that we were interested in. Next, inference on the estimated

components was carried out using a mixture model and an alternative

hypothesis testing approach with a threshold level of 0.5, which

assumes an equal loss on false-positives and false-negatives

(Beckmann, DeLuca, Devlin, & Smith, 2005). This resulted in spatial

probability maps indicating, for each voxel, the probability that the

voxel intensity exceeds the probability of being background noise. To

classify the components into signal versus artifactual noise, we

inspected the spatial probability maps visually using the criteria

described in Kelly et al. (2010). This way, we classified 26 components

as artifactual noise or cerebellar components (Supporting Information

Materials S4). The remaining 44 components were classified as signal

and entered into the template matching procedure described in the

next section.

Next, we derived subject-specific versions of the spatial probabil-

ity maps from the group-ICA and the associated time courses using a

dual-stage regression (Beckmann, Mackay, Filippini, & Smith, 2009;

Filippini et al., 2009). In stage one, the group-ICA spatial maps were

regressed into each subject’s series of functional images to give a set

of time courses. In stage two, these time courses were normalized and

then regressed into the same series of functional images to estimate a

subject-specific set of spatial maps. Each spatial map reflects both the

shape and the amplitude of the intrinsic connectivity within a

component.

2.5.2 | Template matching procedure and computation of
between-component interactions

To identify the components that best match the CEN, the SN, and the

DMN, respectively, we applied a template matching procedure. Using

spatial cross-correlations, we compared the 44 components classified

as signal with spatial probability maps from an independent

20-dimension group-ICA reported in Smith et al. (2009) as well as with

anatomical templates of the CEN, the SN and the DMN provided by

Shirer et al. (2012, https://findlab.stanford.edu/functional_ROIs.html).

We considered all components that showed a spatial correlation of

r ≥ .10 with at least one of the templates. In cases of discrepancy

between the two templates, visual inspection was used to find the

best match.

Additionally, the spatial matching was compared with temporal

interactions between the components. To this end, we computed a

matrix of cross-correlations of the components' time courses for each

subject using the FSLNets v0.5 package (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FSLNets) run inside MATLAB R2015b (The MathWorks, Inc.).

Specifically, we computed the z-transformed Pearson correlations of

each pair of the subject-specific components’ time courses to obtain

between-component interactions. For each interaction, a one-sample

t-test was computed that tested for deviations from zero at the group

level. The matrix of z-transformed t-statistics of the between-

component interactions is illustrated in Figure 3.

Integrating the results of the spatial and temporal cross-correla-

tions, we matched components 19, 30, 31, 33, 40, 46, and 58 to the

CEN, components 15, 24, and 54 to the SN, and components 5, 6,

18, 41, and 43 to the DMN (Figures 4, 5 and 6, Table 1). The remain-

ing components clearly corresponded to visual, auditory or sensorimo-

tor networks or did not directly match an ICN (Supporting Information

Materials S5 and S6). It should be pointed out that component

19 shared spatial overlap with both the CEN and the SN, but that its

peak clusters were located within the dlPFC (Table 1, Figure 4). Fol-

lowing the notion that the dlPFC is a major hub of the CEN (Menon,

2011; Seeley et al., 2007; Sridharan et al., 2008), we matched compo-

nent 19 to the CEN. Component 24 showed spatial correlations with

the SN as well as with the auditory network reported in Smith

et al. (2009). Visual inspection, however, revealed that the peak clus-

ters of component 24 were located in the anterior insula and the infe-

rior frontal gyrus, which supported a matching with the SN (Table 1,

Figure 5). Lastly, besides their overlaps with the DMN, components

41 and 43 also shared overlaps with the SN and CEN, respectively.

The temporal cross-correlations, however, demonstrated stronger

FIGURE 3 Temporal cross-correlations of the components matched

to the CEN, the SN, and the DMN. Colors denote z-transformed t-
statistics of pairwise Pearson correlations. CEN, central executive
network; SN, salience network; DMN, default mode network [Color
figure can be viewed at wileyonlinelibrary.com]
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similarities with the DMN components 5 and 6 (Figure 3), and there-

fore both components were matched with the DMN.

2.6 | Resting state fMRI data analysis

To test whether the intrinsic connectivity within the CEN, the SN or

the DMN can explain individual differences in control-averse behav-

ior, we applied general linear models using nonparametric permutation

inference as implemented in the FSL function randomise (Winkler,

Ridgway, Webster, Smith, & Nichols, 2014) within the respective ICA

spatial map thresholded at Z = 4. For each general linear model we

used the individual level of control-averse behavior as independent

variable and the subject-specific spatial probability maps of the

respective components as dependent variables. Each spatial map con-

tains information on how well each voxel is integrated in the compo-

nent. Statistical inference was based on nonparametric permutation

tests using threshold-free cluster enhancement (TFCE) with 5,000

permutations (Nichols & Holmes, 2002; Smith & Nichols, 2009). To

correct for multiple comparisons we applied family-wise error (FWE)

correction. To visualize the results, we extracted the mean value

across the largest significant cluster at pFWE < .05 for each subject

and plotted it against the individual level of control-averse behavior.

Finally, to test whether control-averse behavior was associated

with between-component interactions, we analyzed the pairwise cor-

relations of the components’ time courses. More specifically, we used

the individual level of control-averse behavior as dependent variable

and the subject-wise z-transformed Pearson correlations between the

subject-specific components’ time courses as independent variables in

robust regression analyses as implemented in the MATLAB R2015b

Statistics and Machine Learning Toolbox function robustfit. To correct

for multiple comparisons we applied Holm–Bonferroni correction. We

visualized the results by plotting the z-transformed coefficients of the

between-component correlations against the individual level of

control-averse behavior.

FIGURE 4 Central executive network (CEN). Left, the CEN as

reported in Shirer et al. (2012) and the frontoparietal network as
reported in Smith et al. (2009) in blue and green, respectively. Right,
ICs from the ICA with 70 dimensions matching the CEN. Brain maps
were thresholded from Z = 3 to Z = 6 (in a gradient from red to
yellow), superimposed on the MNI152 standard space template image
and displayed in radiological convention (left is right). IC, independent

component [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Salience network (SN). Left, the SN as reported in Shirer et al. (2012) and the executive control network as reported in Smith

et al. (2009) in blue and green, respectively. Right, ICs from the ICA with 70 dimensions matching the SN. Brain maps were thresholded from
Z = 3 to Z = 6 (in a gradient from red to yellow), superimposed on the MNI152 standard space template image and displayed in radiological
convention (left is right). IC, independent component [Color figure can be viewed at wileyonlinelibrary.com]
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3 | RESULTS

3.1 | Behavior

First of all we assessed the subjects’ individual levels of control-averse

behavior by comparing their choices in two experimental conditions.

In the Free condition, subjects could choose freely among five levels

of monetary allocations between themselves and another person,

whereas in the Controlled condition, the other person requested a

minimal monetary allocation of level two and thereby restricted the

subjects’ choices to more generous and fairer allocations. A

TABLE 1 Results of the group-ICA and the spatial cross-correlations between the components and the templates of the CEN, SN, and DMN as

provided by Smith et al. (2009) and Shirer et al. (2012)

IC Cluster size Max Z

Peak MNI coordinates

Peak location

Correlation with template

x y z Smith et al. (2009) Shirer et al. (2012)

Central executive network (CEN)

40 3,331 11.40 −42 −50 36 IPL/supramarginal gyrus/angular gyrus 0.22 0.17

106 4.79 50 −50 24 Superior temporal gyrus/IPL/
supramarginal gyrus/angular gyrus

46 3,210 12.10 −30 −72 54 SPL 0.33 0.24

124 5.14 20 −52 42 SPL

58 3,715 12.10 −36 −40 50 IPL/postcentral gyrus 0.30 0.12

145 6.42 −50 34 22 dlPFC/MFG

22 4.50 42 −36 56 IPL/postcentral gyrus

30 3,450 13.90 46 −58 40 IPL/angular gyrus 0.32 0.23

1,578 7.29 −34 −58 48 IPL/angular gyrus

33 3,649 15.10 48 −40 42 IPL/supramarginal gyrus 0.31 0.16

791 6.50 −52 −36 36 IPL

126 5.78 4 −40 64 Paracentral lobule

31 3,431 12.50 50 24 26 dlPFC/MFG 0.20 0.13

2,365 10.80 −44 12 34 dlPFC/MFG/precentral gyrus

30 4.72 −4 58 −12 OFC/medial frontal gyrus

19 4,257 12.70 30 46 26 dlPFC/MFG 0.16 0.15

2,228 10.20 −38 52 22 dlPFC/MFG

Salience network (SN)

15 4,211 20.00 0 16 46 ACC 0.22 0.48

267 6.10 30 14 10 Insula

49 5.76 −26 16 8 Insula

31 4.94 36 48 32 SFG/MFG

23 4.73 −42 20 2 Insula

24 2,476 10.40 52 22 6 Insula/IFG 0.04 0.10

2,253 9.81 −46 22 6 Insula/IFG

54 2,878 8.68 −16 4 −8 Putamen/insula/IFG/OFC 0.16 0.06

2,580 8.58 18 2 −2 Putamen/insula/IFG/OFC

52 4.66 44 32 44 dlPFC/MFG

48 4.83 −2 −14 −8 Midbrain

Default mode network (DMN)

5 5,229 16.10 −6 58 −2 mPFC 0.25 0.45

145 5.89 −2 −46 30 PCC

6 7,776 17.80 −10 42 0 ACC 0.05 0.32

23 5.18 −28 22 −4 OFC

22 6.84 14 20 −28 Insula

41 4,310 13.10 6 52 28 dmPFC/SFG 0.07 0.26

43 3,817 14.20 −6 40 36 dmPFC/SFG 0.01 0.25

29 5.69 −12 −2 16 Caudate

18 4,626 15.80 −2 −60 40 PCC/precuneus 0.45 0.23

45 4.78 8 58 −14 mPFC/medial frontal gyrus

Results from the group-ICA are shown, thresholded at Z ≥ 4 and cluster size >20. IC = independent component; dlPFC = dorsolateral prefrontal cortex; MFG
= middle frontal gyrus; SPL = superior parietal lobule; IPL = inferior parietal lobule; SFG = superior frontal gyrus; OFC = orbitofrontal cortex; dmPFC = dor-
somedial prefrontal cortex; mPFC = medial prefrontal cortex; PCC = posterior cingulate cortex; ACC = anterior cingulate cortex; IFG = inferior frontal gyrus.

RUDORF ET AL. 7



manipulation check confirmed that subjects indeed felt more con-

trolled in the Controlled condition than in the Free condition as

assessed by trial-by-trial affect ratings (p < .001, Table 2). Subjects

also reported feeling unhappier and angrier in the Controlled than in

the Free condition (p < .001, Table 2). At the aggregate level, subjects

chose, on average, lower levels in the Controlled condition (mean

3.52 � SD 0.73, median 3.44) than in the Free condition (mean

4.20 � SD 0.77, median 4.44; Wilcoxon signed rank test, two-tailed,

Z = −4.83, p < .001; Hodges-Lehmann median of differences = 0.88,

95% CI [0.66–1.13]; Figure 7). This statistical test was corrected for a

bottom effect, following the procedure by Falk and Kosfeld (2006).

To verify that the behavior was not affected by the scanner envi-

ronment, we compared the behavioral results with data from a behav-

ioral study with N = 42 subjects (26 female; mean 22 � SD 4 years) in

a computer laboratory. The comparison confirmed that the behavior

subjects displayed in the resting state fMRI study was remarkably sim-

ilar to the behavior subjects showed in the behavioral study (see Sup-

porting Information Materials S1–S3).

Next, we computed subjects’ individual levels of control-averse

behavior as the mean chosen level in the Free condition minus the

mean chosen level in the Controlled condition. As illustrated by the

histogram in Figure 7 the individual levels of control-averse behavior

are well distributed. For completeness, the distributions of the chosen

levels in each condition are depicted in the Supporting Information

Materials S3. Male and female subjects did not differ in their

individual levels of control-averse behavior (Wilcoxon rank sum test,

two-tailed, Z = 1.21, p = .227). Lastly, age was not significantly corre-

lated with control-averse behavior (Spearman’s rho = 0.01, p = .960;

R2 = 0.02, p = .382).

3.2 | Functional connectivity within the SN predicts
control-averse behavior

The first aim of the resting state fMRI analysis was to test whether

the intrinsic dynamics within the CEN, the SN, and the DMN can pre-

dict individual differences in control-averse behavior. First of all we

identified the components that best matched the CEN, the SN, and

the DMN using a template matching procedure (Figures 3, 4, 5 and 6,

Table 1). We then computed, for each subject and each component,

spatial probability maps that indicate the voxel-wise amplitude of the

intrinsic connectivity within the respective component. These spatial

probability maps were then entered into regression analyses with

nonparametric permutation inference using TFCE.

The regression analyses revealed that the functional connectivity

within the SN component 15, specifically in the dorsal ACC, correlates

positively with the individual level of control-averse behavior (peak

MNI coordinates [−2, 26, 46], cluster size = 2,994 voxels, peak pFWE <

.001, FWE-corrected for multiple comparisons across space using

TFCE; Figure 8). The results remained robust after exclusion of three

outliers with a functional connectivity greater than 2 SD from the

TABLE 2 Affects as assessed by trial-by-trial ratings in the Controlled compared with the Free condition

Controlled condition Free condition
Controlled > Free Wilcoxon signed
rank test (two-tailed) Hodges–Lehmann median of differences

M SD M SD Z stat p Estimator 95% confidence interval

Unhappiness 1.99 0.67 1.50 0.51 4.95 <.001 −0.63 −0.88 −0.44

Anger 1.67 0.59 1.30 0.39 4.40 <.001 −0.50 −0.75 −0.31

Being controlled 2.17 0.90 1.64 0.80 4.39 <.001 −0.63 −0.94 −0.44

Sample size N = 50 subjects.

FIGURE 6 Default mode network (DMN). Left, the DMN as reported in Shirer et al. (2012) and Smith et al. (2009) in blue and green, respectively.

Right, ICs from the ICA with 70 dimensions matching the DMN. Brain maps were thresholded from Z = 3 to Z = 6 (in a gradient from red to
yellow), superimposed on the MNI152 standard space template image and displayed in radiological convention (left is right). IC, independent
component [Color figure can be viewed at wileyonlinelibrary.com]
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mean (Supporting Information Materials S7). No other component

showed significant correlations, even at a more liberal threshold of

pFWE < .10. The results were highly similar when using GSR during

preprocessing (see Supporting Information Materials S8 and S9).

3.3 | Association of control-averse behavior and
between-component interactions

Finally, we examined the association of control-averse behavior and

between-component interactions. To do this, we ran robust regres-

sion analyses using the individual level of control-averse behavior as

dependent variable and the subject-wise z-transformed coefficients of

the between-component correlations as independent variables. Due

to the specific association between the SN component 15 and

control-averse behavior and the SN’s proposed key role in switching

between activations and deactivations of the CEN and the DMN

(Menon, 2011; Menon & Uddin, 2010), we focused on interactions of

the SN component 15 with components of the CEN and the DMN.

After Holm–Bonferroni correction, no interaction was signifi-

cantly correlated with control-averse behavior. At an uncorrected sta-

tistical threshold, interactions between the SN component 15 and

component 58, representing a left fronto-parietal component of the

CEN, showed a negative association with control-averse behavior

(β = −1.36, R2 = .10, puncorrected = .026; Figure 9). Although the low R2

coefficient of determination warrants caution, this result could moti-

vate further investigations into whether a more negative temporal

coupling between the SN and the CEN is associated with greater indi-

vidual levels of control-averse behavior.

FIGURE 7 Control-averse behavior. Boxplots show the chosen levels in the Controlled and the Free condition. The central mark of each box

shows the median, the box edges show the 25th and 75th percentiles, the whiskers represent the limit beyond which data points are considered
outliers (shown as crosses), and the connected data points show individual subjects' means. The histogram shows the distribution of subjects'

individual levels of control-averse behavior, computed as the mean chosen level in the Free condition minus the mean chosen level in the
Controlled condition. Data from N = 50 subjects are shown

FIGURE 8 Control-averse behavior correlates positively with functional connectivity within the SN. Left, voxels showing significant associations

(.001 < pFWE < .05) in a gradient from yellow to red overlaid on top of the SN component 15 (in blue) as defined by the ICA spatial map
thresholded at Z = 4, superimposed on the MNI152 standard space template image. Right, scatterplot showing the individual level of control-
averse behavior plotted against the mean functional connectivity across the largest significant cluster in the dorsal ACC. The regression line was
estimated using robust regression. Observations are jittered along the x-axis to reduce overlap for visualization. The results remained robust after
exclusion of outliers (Supporting Information Materials S7). SN, salience network; ACC, anterior cingulate cortex; IC, independent component
[Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

This study investigated whether individual differences in control-

averse behavior could be explained by stable characteristics of three

core intrinsic brain networks at rest, the CEN, the SN and the DMN.

We found that the functional connectivity within the SN positively

predicted individual control-averse behavior. Specifically, subjects

with a more prominent connectivity hub in the dorsal ACC showed

greater levels of control-averse behavior. Interestingly, this result was

specific to the SN and was not found in the CEN or DMN.

Control-averse behavior is a ubiquitous phenomenon that affects

social interactions in many domains of our society. When people

sense that their freedom of choice is restricted, some people will com-

ply, but others will act against the restriction. The fact that people dif-

fer in their degree of control-averse behavior has been described in

previous studies. Yet, the neurobiological basis of individual differ-

ences in control-averse behavior has not been fully elucidated. To illu-

minate this issue, we assessed control-averse behavior in a decision

making task with real (monetary) consequences. This feature helps to

overcome limitations that would be associated with self-reports, such

as the need for introspection or the proneness to cognitive biases and

social desirability effects, and it therefore ensures a higher ecological

validity. Moreover, it could be argued that actual decisions are more

informative of subjects’ preferences than subjects’ reflections on their

past behavior or their imagination of hypothetical scenarios. Using this

ecologically valid measurement of control-averse behavior, we were

able to identify a possible source of the heterogeneity in control-

averse behavior in the intrinsic neural dynamics of the SN.

The SN has been associated with the stable maintenance of cog-

nitive task sets and thereby the display of stable preferences over an

entire task (Dosenbach et al., 2006, 2007). In line with this argument,

our data suggest that the intrinsic connectivity within the SN reflects

a brain characteristic that determines the individual preference for

control-averse behavior. Moreover, the SN is a key network in the

detection of and attention reorientation to salient external and inter-

nal stimuli (Menon, 2011; Seeley et al., 2007). Further, the SN, but not

the CEN or DMN, has been shown to uniquely decode individual

behavioral tendencies for cooperation (Hahn et al., 2015), a central

human social behavior that requires attending to own- and other-

related benefits. Complementing this research, we find that connectiv-

ity within the SN, as opposed to the CEN or DMN, is associated with

individual control-averse behavior in a task that involves attending to

and weighing the own and another person’s profit. Considering its key

role in responses to salient stimuli, a stronger connectivity of the dor-

sal ACC within the SN could imply an increased individual propensity

to assign saliency to the exogenous control of one’s choices and thus

to react to the control.

Corroborating the role of the ACC and the insula in salience pro-

cessing, both regions are also considered central nodes in a neural

network that is anchored around the amygdala and responds to aver-

sive stimuli. This aversion network has been shown to mediate both

the passive perception of as well as the more complex cognitive or

behavioral responses to aversive stimuli (Bickart, Hollenbeck,

Barrett, & Dickerson, 2012; Hayes & Northoff, 2011). Activation in

the dorsal ACC, in particular, has been shown to increase during social

distress (Eisenberger, Lieberman, & Williams, 2003), supporting the

involvement of the dorsal ACC in responses to aversive social events.

Our findings extend this research by linking the individual response to

the aversive social event of being controlled by another person to the

intrinsic connectivity centered on the dorsal ACC.

Furthermore, the SN has been shown to play a critical role in

switching between the engagement of the CEN and the DMN in rest-

ing state fMRI and cognitive tasks (Bressler & Menon, 2010; Goulden

et al., 2014; Menon & Uddin, 2010; Sridharan et al., 2008). Whereas

an engagement of the CEN might facilitate goal-directed behavior

(Menon, 2011; Seeley et al., 2007), an engagement of the DMN might

facilitate self-related and social thoughts (Li et al., 2014; Mars et al.,

2012; Menon, 2011). Although the neural capacity to balance goal-

directed behavior and social thoughts seems relevant to control-

averse behavior, we did not find a correlation between the SN and

the CEN or DMN that significantly corresponded to the individual

level of control-averse behavior. At an uncorrected statistical thresh-

old, however, we found a negative association between control-

averse behavior and the intrinsic connectivity between the SN and

FIGURE 9 Interactions between the SN and the CEN correlate negatively with control-averse behavior. Left, spatial probability maps of the

components. Right, the graph shows the z-transformed coefficient of the subject-wise correlations between the indicated components, plotted
against the individual level of control-averse behavior. The regression line was estimated using robust regression. Observations are jittered along
the x-axis to reduce overlap for visualization. SN, salience network; CEN, central executive network; IC, independent component [Color figure can
be viewed at wileyonlinelibrary.com]
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the CEN. Albeit nonsignificant, this association is in line with a recent

finding that a decreased intrinsic connectivity between the SN and

the CEN is associated with less generous choices in a trust game

(Cáceda et al., 2015). The finding also links the resting state fMRI data

to the task-related fMRI data, which revealed an association between

the individual level of control-averse behavior and an increased func-

tional connectivity between two core regions of the CEN, the inferior

parietal lobule and the dlPFC, in the Controlled as opposed to the

Free condition (Rudorf et al., 2018). Similar to the resting state fMRI

data, the intrinsic connectivity between these two CEN nodes, that is,

the residual functional connectivity after controlling for the events of

the task, did not predict control-averse behavior. Although ICNs at

rest have been shown to correspond well with ICNs during tasks

(Smith et al., 2009), they also display lower global efficiency and

higher modularity compared with task-related coactivation networks

(Di, Gohel, Kim, & Biswal, 2013; Kitzbichler, Henson, Smith, Nathan, &

Bullmore, 2011), suggesting an energy-saving reduction of global

information transmission and between network integrations during

rest (Bullmore & Sporns, 2012). To further investigate this issue,

future studies could test specifically whether changes in between-

network integrations of the SN and CEN during rest compared with

task demands might contribute to the individual differences in

control-averse behavior, for example, by using effective connectivity

or graph theoretical analyses.

By assessing the intrinsic neural connectivity at rest, the current

study has identified a neural trait underlying control-averse behavior,

that is, an objective, task-independent neural measurement that is sta-

ble across time and capable of differentiating between individuals,

similar to a neural fingerprint (Finn et al., 2015; Nash et al., 2015). The

evidence for a neural trait underlying control-averse behavior comple-

ments previous work that has described individual differences in con-

trol aversion at the behavioral level (Falk & Kosfeld, 2006; Schmelz &

Ziegelmeyer, 2015; Ziegelmeyer et al., 2012). A more thorough under-

standing of the association between neural traits and control-averse

behavior not only adds to a more comprehensive model of control

aversion, but could also be applied to the clinical context. For exam-

ple, if assessing patients’ neural traits could help identifying candi-

dates for control-averse behavior, treatment plans could be adapted

accordingly to increase the patients’ compliance to the treatment and

thereby the treatment’s overall efficiency. One great advantage of

resting state fMRI is that a short resting state scan is much more feasi-

ble in the daily clinical routine than a more complex task-based fMRI

procedure (Finn et al., 2015).

5 | CONCLUSION

Using a data-driven ICA approach, this study has identified a new link

between the intrinsic functional brain organization and a ubiquitous

social phenomenon, control-averse behavior. In particular, our findings

suggest that the heterogeneity in control-averse behavior might origi-

nate in distinct patterns of connectivity centered on the salience net-

work (SN). These findings therefore provide the first evidence of a

neural trait of control-averse behavior.
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